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Abstract

Motion picture depth map datasets are not common. This
makes application of depth prediction to motion pictures
difficult. An indirect unsupervised model has been devised
to get around this limitation and a new 3D movie dataset
has been assembled for the purpose of  training it. Our
dataset consists of stereo frames extracted from 3D mo-
tion pictures spanning multiple genres and containing di-
verse content. The proposed model uses an established loss
and network architecture which accounts for motion pic-
ture stereo disparity and utilizes a monocular image and
optic flow as input.  This has created a depth estimating
tool suitable for applications such as automatic 3D stereo
synthesis from 2D input. To the best of our knowledge, the
techniques employed by this model have not been leveraged
in the way proposed herein and its potential creative utility
has not fully been realized elsewhere.

https://github.com/oxt3479/3D_learner
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1. Introduction

Depth datasets already exist. However, many of them consist
of sparse or incomplete maps which are insufficient for training
a one-to-one image depth prediction model. = The best amongst
these existing datasets additionally fail to represent the creative
scene content found in motion pictures. [3] Creative scenes call
for a network which uses a highly diverse dataset trained using
a semi-unsupervised approach. Semi-unsupervised models have
been used in the past, but have not been applied to motion pictures.
[4,1]

1.1. Creative Scenes and Complications

In this paper, a creative scene refers to a typical image com-
position found in a motion picture or film. Common aspects of
these frames include: human subjects, nuanced lighting config-
urations, extensive CGI, and highly variable camera motion and

parameters. All of these attributes contribute to an increasingly
complicated means of depth prediction. Combating this level of
variability calls for a large dataset. Our collection of 1.7 million
stereo frame pairs seeks to satisfy this issue. 3D stereo pairs can
be extracted from any 3D movie, and each film can provide any-
where from 100,000 to 250,000 frame pair samples. Our dataset
currently contains 12 movies.

1.2. Applications and Demonstration

A depth map can be used creatively in many different ways. It
permits the changing of image focus. It can also be used when
compositing two shots together, allowing subjects to pass in be-
tween each other, unlike a simple green-screen. It can be used in
applying effects that need depth information to render properly, for
instance fog which gets more opaque at further distances. Depth
maps can be estimated without automatic monocular estimation
but this is resource intensive and never real-time. A complete and
automatic depth prediction pipeline would reduce resources used
on this work tremendously.

All these effects can be applied to any film retroactively. Depth
maps can serve as a powerful  extension for compositing soft-
ware or as consumer-side post-processing used by a phone or head
mounted display (HMD/VR) app. In this way depth maps can be
used in automatic 3D augmentation of 2D motion pictures.  To
demonstrate these capabilities, we have rendered a Virtual Re-
ality 3D stereo experience that uses our framework to generate
a 3D illusion. It can be viewed using most headsets including
Google Cardboard on YouTube at the following URL: https:
//www .youtube.com/watch?v=_v1imUA-dIE. [6]

2. Related Work

Training on 3D Movie Stereo Pairs has been done in the past as

a means of creating new stereo compliments for monocular video.
[7] Xie et al. previously used stereo pairs to train an end to end
network that reconstructed one stereo image from another. Their
training method utilized a dataset of approximately 3,000,000 im-
age pairs at a lower resolution than the proposed method. While
their model did generate disparity maps at an intermittent step in
stereo generation, those depth maps are not ideal for all our ex-
plored applications. These maps can be see in Figure 2.  Their
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Figure 1. The proposed architecture.

framework would perform insufficiently in the domains of com-
positing, focus changes, and depth based rendering due to severe
banding.

Stereo Reconstruction Loss has been used to successfully pro-
duce higher quality depth maps. The idea behind it is that provided
a pair of left and right camera views, one view can be constructed
from the other using an accurate depth map.

The training method of Godard et al. [4] utilized stereo pairs
from the KITTTI Stereo 2015 self driving dataset. This dataset con-
tains left and right stereo image pairings taken from the top of a
car with front facing cameras driving through traffic. [5] The loss
function used by Godard et al. relied on stereo reconstruction too
but instead of using the depth map as an intermittent step like Xie
et al., the depth map is the output of the network.  This is what
makes their network and our network unsupervised. To be unsu-
pervised means that the network’s training can not exclusively rely
on ground truth data. If complete depth maps were accessible for
motion pictures then supervised training could take place. This is
not the case, so an unsupervised approach must be used.

This alternative approach, done three years later, provides su-
perior depth maps to Xie et al. . The problem with this model is its
extreme bias towards automotive footage. This is mostly due to the
contents of the KITTI stereo 2015 dataset, but its also exacerbated
by the loss function when retraining their network. In Figure 2
there are clear issues when using their trained network on creative
scenes. An initial step of our architecture was to re-implement this
model and then build upon it.

Title | Frame Count
The Hobbit: An Unexpected Journey 244,105
The Hobbit: The Desolation of Smaug 232,112
The Hobbit: The battle of the Five Armies 207,921
Transformers: The Last Knight 222,448
Transformers: Dark of the Moon 222,104
Prometheus 178,056
Resident Evil: Retribution 137,568
Resident Evil: Afterlife 139,368
Dredd 137,905
47 Ronin 170,786
X-men Apocalypse 207,088

Table 1. Stereo pair frame counts of motion pictures in our dataset.

3. Our Approach
3.1. Architecture

Our approach utilizes aspects of the loss function of Godard et
al.[4] and uses a dataset similar to Xie et al.[7] A diagram of the
proposed architecture can be seen in Figure 1. The changes we
have introduced have permitted for positive and negative disparity,
and uses optic flow as input when training and predicting. The
network itself uses a Resnet encoder-decoder that has three depth
outputs at increasing resolution in succeeding decoding stages. It
takes (256 x 640 x 7) inputs. The seven includes two layers of
optic flow in the x and y direction between the current frame and



Our’s: Trained with Optic Flow

Figure 2. Depth map generation method comparison.

Figure 3. Ilustration of disparity in our dataset (left) vs. disparity
in Kitti stereo 2015 (right).

previous frame, three color image layers, and two more x and y
optic flow between the current frame and next frame.

3.2. Dataset

Our dataset is constructed from 12 3D movies. A breakdown
of these films can be seen in table 1. Many movies released to-
day are retroactively converted to 3D through a lengthy unstan-
dardized process called ’dimensionalization’ or ’Digital 3D’. In
the interest of using real stereo camera information, the films we
chose were all shot for 3D (i.e. not dimensionalized or Digital
3D). This choice was made to prevent the network from learning
any patterns present in footage artificially made into 3D through
’Digital 3D’, and only pick up on real world correspondences be-
tween stereo cameras. It should be noted that our 12 films are
all live action, and contain a considerable amount if CGI. Films
which were completely animated are not included and also already
have the means of producing perfect depth maps. The resolution
the model was trained at was 640 x 256 pixels. This provides an
aspect ratio (screen width / screen height) of 2.5, which is an ac-
ceptable middle-ground for most widescreen motion pictures. It



Figure 4. Validation results with optic flow.

also simplifies network structure by being recursively divisible by
2 and therefore does not produce odd numbers when being down-
sampled by half. Resolution can be increased in future iterations
very easily; it is only a matter of more training time.

3.3. Disparity Changes

When initially adapting the architecture of Godard et al. , a
few issues became apparent immediately. Firstly, the dataset that
they originally was trained on only exhibited positive disparity.
Disparity is the direction a pixel moves when switching between
3D stereo pairs. Disparity goes in one direction in the Kitti stereo
dataset because the two cameras on top of the car were placed fac-
ing forward in parallel, converging at infinity. Cameras on a 3D
motion picture set do not do this and instead converge on a sub-
ject. This subject is most frequently an actor in the scene. What
this means is that a creative scene’s disparity map must have pos-
itive and negative disparity to completely describe the difference

between the left and right images. An illustration of why this hap-
pens can be seen in Figure 3. Our first change made to the archi-
tecture was an adjustment to its loss function that allowed for dis-
parity in both directions. Without making this change issues like
those observed in Appendix A occur. There you can see predic-
tions for elements in front of the point of convergence are accurate
but those behind are completely wrong.

3.4. Frame Triplets

When inputting frames into the network individually while ac-
counting for disparity in both directions, results showed marked
improvement over the network trained on automotive footage. In
an effort to increase performance further, triplets of frames were
put into the network. In other words, instead of inputting a single
image, we would pass in the image before it and the image after it
in the motion picture.

Initial results from this implementation were sub-satisfactory



and were worse than when input was individual frames. The rea-
son behind this is partially obfuscated due to the network’s black
box properties, but the basic principle is likely that the input arrays
for each pixel are not ’aligned’ when representing three different
images. This issue can be rectified using alternative representa-
tions like optic flow.

3.5. Optic Flow

OpenCV has a function cv.calcOpticalFlowFarneback() that
uses the method outlined by Farneback in 2003.[2] It provides a
dense optic flow approximation for every pixel in a given frame.
We calculated this at a 720p resolution before down-sampling it to
640 x 256 in order to maximize its accuracy. The augmentation of
input data with optic flow has shown to improve depth estimation.
This can be seen in Figure 2. Optic flow matrices were scaled to
have an absolute average of 1.0 flow, as we are only interested in
the intra-frame differences in flow when predicting depth. A value
of 1.0 in an optic flow frame would represent average positive flow
in that current frame, 0 would represent no change, and -1.0 repre-
sents flow of equal magnitude in the opposite direction. The flow
of the frame before and after are included for every input. Optic
flow in the x and y direction are stored in separate matrices.

4. Results

Before implementation of the novel optic flow input, results
already were showing successfully adaptation to the new dataset.
The loss function required minor reworking before the network
was able to produce good maps. An issue however was a tremen-
dous amount of ’noise’ and ’spike’ artifacts. These are most
clearly seen in Figure 2.  Spikes were mitigated by introducing
limits to the disparity which prohibited exaggerated spikes of im-
possible disparity. Depth noise was reduced by adding the optic
flow frames. After the introduction of optic flow results were more
’smooth’. A smother depth map is more true to reality and makes
reconstruction less jarring.

Our ultimate implementation that took optic flow input has
only been trained on the *The Hobbit: Desolation of Smaug’. Cal-
culating optic flow for every frame needs to be done once before
training in this way. For us it took about 5 hours to complete a
single film using a Virtual Machine allocated 8 cores of an Intel
E5-2697 Xeon CPU and 32GB of RAM. Despite this limited train-
ing, inferences can be gleamed from the results. Training itself can
take 72 hours using an Nvidia Quadro P5000.

In order to assess our network with limited training a specific
test film was chosen. ’Lord of the Rings: the Fellowship of the
Ring’ is a 2D motion picture with a lot of overlapping subject mat-
ter with the Hobbit. Looking at the depth results from this we can
see a few patterns. Looking at Figure 4, there is notably better
performance exhibited on subjects that are within both films, this
includes elves and dwarfs. The shots in the test film are neverthe-
less unique in terms of composition, so it appears that the network
is able to learn to recognize subjects on some level to help it infer
depth. With additional training on more subject matter it’s possi-
ble that issues with other subjects may be resolved. For instance,
if the network is exposed to transformers, it is possible a mechanic
looking creature like Sauron will be easier to predict as it will be
forced to generalize.

5. Conclusion

Based on the results seen here there is clear promise in the po-
tential application of this technology for motion pictures. ~With
very little resources and at almost no cost this framework was as-
sembled and made to work by an individual undergraduate student.
Improving upon this dramatically can be done with the introduc-
tion of multiple stages of training or the use of supplemental syn-
thetic data. These results show no signs of hitting a barrier and are
limited only by the work invested in their refinement.

References

[1] B. Atapour-Abarghouei. Real-time monocular depth estima-
tion using synthetic data with domain adaptation via image
style transfer. CVPR.

[2] Farneback. Two-frame motion estimation based onpolyno-
mial expansion. Computer Vision Laboratory,, 2003.

[3] M. Firman. RGBD Datasets: Past, Present and Future. In
CVPR Workshop on Large Scale 3D Data: Acquisition, Mod-
elling and Analysis, 2016.

[4] F.B. Godard, Aodha. Digging into self-supervised monocular
depth estimation. 2019.

[5] M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[6] O. Thompson. Ai predicted stereo vr auto-remaster: Test 3.

[7] F. Xie, Girschick. Deep3d: Fully automatic 2d-to-3d video
conversion with deep convolutional neural networks.2016.

Appendix A. Disparity Issues

Figure 5. Results when training with disparity only being in one
direction.
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